Energy Options

We have exclusively partnered with Sunspire Alternative Energy Solutions and in collaboration with their team are able to offer our clients a range of alternative energy options and custom designed hybrid systems.

Hybrid renewable energy systems are becoming popular power generation applications due to advances in renewable energy technologies and subsequent rise in prices of petroleum products. A hybrid energy system usually consists of two or more renewable energy sources used together to provide increased system efficiency as well as greater balance in energy supply.
Heat Pumps
In heating, ventilation and air conditioning (HVAC) applications, the term heat pump usually refers to easily reversible vapor-compression refrigeration devices optimized for high efficiency in both directions of thermal energy transfer.

Heat spontaneously flows from warmer places to colder spaces. A heat pump can absorb heat from a cold space and release it to a warmer one. "Heat" is not conserved in this process, which requires some amount of external high grade (low-entropy) energy, such as electricity.

Heat pumps are used to provide heating because less high-grade energy is required for their operation than appears in the released heat. Most of the energy for heating comes from the external environment, and only a fraction comes from electricity (or some other high-grade energy source required to run a compressor). In electrically powered heat pumps, the heat transferred can be three or four times larger than the electrical power consumed, giving the system a coefficient of performance (COP) of 3 or 4, as opposed to a COP of 1 for a conventional electrical resistance heater, in which all heat is produced from input electrical energy.

Heat pumps use a refrigerant as an intermediate fluid to absorb heat where it vaporizes, in the evaporator, and then to release heat where the refrigerant condenses, in the condenser. The refrigerant flows through insulated pipes between the evaporator and the condenser, allowing for efficient thermal energy transfer at relatively long distances.

Solar Energy
Solar energy is radiant light and heat from the sun harnessed using a range of ever-evolving technologies such as solar heating, solar photovoltaics, solar thermal electricity, solar architecture and artificial photosynthesis.

Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.

In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".

Wind Energy
Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to produce electrical power, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships.

Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. For new constructions, onshore wind is an inexpensive source of electricity, competitive with or in many places cheaper than fossil fuel plants. Offshore wind is steadier and stronger than on land, and offshore farms have less visual impact, but construction and maintenance costs are considerably higher. Small onshore wind farms can feed some energy into the grid or provide electricity to isolated off-grid locations.

Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation and uses little land.[4] The effects on the environment are generally less problematic than those from other power sources. As of 2011, Denmark is generating more than a quarter of its electricity from wind and 83 countries around the world are using wind power to supply the electricity grid.[5] In 2010 wind energy production was over 2.5% of total worldwide electricity usage, and growing rapidly at more than 25% per annum.

Wind power is very consistent from year to year but has significant variation over shorter time scales. As the proportion of windpower in a region increases, a need to upgrade the grid, and a lowered ability to supplant conventional production can occur. Power management techniques such as having excess capacity storage, geographically distributed turbines, dispatchable backing sources, storage such as pumped-storage hydroelectricity, exporting and importing power to neighboring areas or reducing demand when wind production is low, can greatly mitigate these problems.[8] In addition, weather forecasting permits the electricity network to be readied for the predictable variations in production that occur.

Gas Energy

We offer a variety of Gas water heating and Gas cooking solutions which includes everything from selecting products for your specific lifestyle needs through to final installation and project commissioning. (By professional authorised installers)